Effect of natural gas conditions on combustion characteristics and overall performance of a novel bimodal internal combustion engine

نویسندگان

  • S. Menon
  • H. Ganti
  • K. Niemeyer
  • C. Hagen
چکیده

Abundant availability and potential for lower CO2 emissions are drivers for increased utilization of natural gas in automotive engines for transportation applications. However scarce refueling resources for on-road vehicles impose an infrastructure limited barrier on natural gas use in transportation. A novel ‘bimodal’ engine which can operate in a compressor mode has been developed that allows on-board refueling of natural gas where available without the need for any supplemental device. Engine compression of natural gas however results in altering the initial state of the fuel with potential impact on combustion characteristics and overall engine performance. Increase in natural gas temperature and addition of oil are two key effects attributed to the onboard refueling process. A secondary effect is the presence of water in the natural gas supply line. This study aims to investigate these effects by coupling an upfront system model of the onboard refueling process with a thermodynamic model of the engine processes. Parametric studies will be undertaken to study the effects of variation in natural gas inlet temperature, oil and water content on ignition, flame propagation and auto-ignition processes. Inlet fuel temperature has a strong influence on unburned hydrocarbons released in the exhaust while presence of heavier hydrocarbons due to the oil content can influence auto-ignition characteristics. Another effect of implementing the onboard refueling setup is that it requires altering the spark plug placement in the cylinder head. The influence of this modification will be additionally studied through literature review. Overall, this work attempts to model the influence of the upstream natural gas refueling stage on downstream combustion processes to verify that engine metrics such as overall efficiency, coefficient of variation, and hydrocarbon emissions are maintained at an acceptable level to ensure clean combustion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Comparative Investigation of Compressed Natural Gas as an Alternative Fuel in a Bi-Fuel Spark Ignition Engine

Nowadays, increased attention has been focused on internal combustion engine fuels. Regarding environmental effects of internal combustion engines particularly as sources of pollution and depletion of fossil fuels, compressed natural gas has been introduced as an alternative to gasoline and diesel fuels in many applications. A high research octane number which allows combustion at higher co...

متن کامل

Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation

The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...

متن کامل

Optimization of GRI-mech 3.0 Mechanism using HCCI Combustion Models and Genetic Algorithm

  This paper presents a modeling study of a CNG Homogenous Charge Compression Ignition (HCCI) engine using single-zone and multi-zone combustion models. Authors' developed code could be able to predict engine combustion and performance parameters in closed part of the engine cycle. As detailed chemical kinetics is necessary to investigate combustion process in HCCI engines, therefore, GRI-m...

متن کامل

Studying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation

Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...

متن کامل

Effect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015